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Coupled replicator equations for the dynamics of learning in multiagent systems
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Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe
the dynamics of collective learning in multiagent systems. We show that, although agents model their envi-
ronment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through
environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the
collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include
quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected
in heterogeneous multiagent systems described by the general replicator equations we derive.
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Adaptive behavior in multiagent systems is an import
interdisciplinary topic that appears in various guises in ma
fields, including biology@1#, computer science@2#, econom-
ics @3#, and cognitive science@4#. One of the key common
questions is whether a group of intelligent agents truly
gages in collective behaviors that are more functional t
individuals acting alone, and, if so, how.

Suppose that many agents interact with an environm
and each independently builds a model from its sens
stimuli. In this simple type of coupled multiagent syste
collective learning~if it occurs! is a dynamical behavio
driven by agents’ environment-mediated interaction@5,6#.
Here we show that the collective dynamics in multiage
systems, in which agents use reinforcement learning@7#, can
be modeled using a generalized form of coupled replica
equations.

While replicator dynamics was introduced originally f
evolutionary game theory@8#, the relationship between rein
forcement learning and replicator equations has been de
oped only recently@9#. Here, we extend these consideratio
to multiagent systems, introducing the theory behind a p
viously reported game-theoretic model@10#. We show that
replicator dynamics emerges as a special case of
continuous-time limit for multiagent reinforcement-learnin
systems. The overall approach, though, establishes a ge
framework for dynamical-systems analyses of adaptive
havior in collectives.

Notably, in learning with perfect memory, our model r
duces to the form of a multipopulation replicator equati
introduced in Ref.@11#. For two agents with perfect memor
interacting via a zero-sum rock-scissors-paper game, the
namics exhibits Hamiltonian chaos@10#. In contrast, as we
show here, with memory decay, multiagent systems ge
ally become dissipative and display the full range of nonl
ear dynamical behaviors, including limit cycles, interm
tency, and deterministic chaos.

Our multiagent model begins with simple reinforceme
learning agents. To clarify the development, we assume
there are two such agentsX andY that at each time step tak
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one of N actions:i 51, . . . ,N. Let the probability forX to
choose actioni be xi(n) and yi(n) for Y, where n is the
number of the learning iterations from the initial state atn
50. Agents’ choice distributions at timen are x(n)
5„x1(n), . . . ,xN(n)… and y(n)5„y1(n), . . . ,yN(n)…, with
( ixi(n)5( i yi(n)51.

Let Ri j
X and Ri j

Y denote the rewards forX taking actioni
andY actionj at stepn, respectively. Given these actions,X’s
and Y’s memories,Qi

X(n) and Qi
Y(n), of the past benefits

from their actions are governed by

Qi
X~n11!2Qi

X~n!5Ri j
X2aXQi

X~n! and

Qi
Y~n11!2Qi

Y~n!5Ri j
Y2aYQi

Y~n!, ~1!

where aX ,aYP@0,1) control each agent’s memory deca
rate andQi

X(0)5Qi
Y(0)50. The agents choose their ne

actions according to theQ’s, updating their choice distribu
tions as follows:

xi~n!5
ebXQi

X(n)

(
j

ebXQj
X(n)

and yi~n!5
ebYQi

Y(n)

(
j

ebYQj
Y(n)

, ~2!

where bX ,bYP@0,̀ # control the learning sensitivity: how
much the current choice distributions are affected by p
rewards. Using Eq.~2!, the dynamic governing the change
agent state is given by

xi~n11!5
xi~n!ebX(Qi

X(n11)2Qi
X(n))

(
j

xj~n!ebX(Qj
X(n11)2Qj

X(n))

, ~3!

and similarly foryi(n11).
Consider the continuous-time limit corresponding

agents performing a large number of actions@iterates of Eqs.
~1!# for each choice-distribution update@iterates of Eq.~3!#.
In this case, we have two different time scales—that
agent-agent interactions and that for learning. We assu
that the learning dynamics is very slow compared to inter
tions and sox andy are essentially constant during the latte
Then, based on Eq.~3!, continuous-time learning for agentX
is governed by
©2003 The American Physical Society06-1
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ẋi5bXxi S Q̇i
X2(

j
Q̇ j

Xxj D , ~4!

and for the dynamic governing memory updates we have

Q̇i
X5Ri

X2aXQi
X , ~5!

where Ri
X is the reward forX choosing actioni, averaged

over Y’s actions during the time interval between learni
updates. Putting together Eqs.~2!, ~4!, and~5!, one finds

xi̇

xi
5bXFRi

X2(
j

xjRj
XG1aXI i

X , ~6!

where I i
X[( j xj ln(xj /xi) represents the effect of memor

with the decay parameteraX . ~The continuous-time dynam
ics of Y follows in a similar manner.! Eq. ~6!, extended to
account for any number of agents and actions, constitutes
general model for reinforcement-learning multiagent s
tems.

Simplifying again, assume a fixed relationship betwe
pairs (i , j ) of X’s and Y’s actions and between rewards f
both agents:Ri j

X5ai j and Ri j
Y5bi j . Assume further thatx

and y are independently distributed, then the time-avera
rewards forX andY become

Ri
X5(

j
ai j y j and Ri

Y5(
j

bi j xj . ~7!

In this restricted case, the continuous-time dynamics is

ẋi

xi
5bX@~Ay! i2x•Ay#1aXI i

X ,

ẏi

yi
5bY@~Bx! i2y•Bx#1aYI i

Y , ~8!

where (A) i j 5ai j and (B) i j 5bi j , (Ax) i is the i th element of
the vectorAx, andbX andbY control the time scale of eac
agent’s learning.

We can regardA and B as X’s and Y’s game-theoretic
payoff matrices for actioni against opponent’s actionj @12#.
In contrast with the game theory, which assumes that ag
have exact knowledge of the game structure and of o
agent’s strategies, reinforcement-learning agents have
knowledge of a ‘‘game’’ in which they are playing, only
myopic model of the environment—other agent~s!—given
implicitly via the rewards they receive. Nonetheless, a ga
dynamics emerges—viaRX andRY in Eq. ~6!—as a descrip-
tion of the collective’sglobal behavior.

Given the basic equations of motion for th
reinforcement-learning multiagent system@Eq. ~8!#, one be-
comes interested in, on the one hand, the time evolution
each agent’s state vector in the simplicesxPDX andyPDY
and, on the other, the dynamics in the higher-dimensio
collectivesimplex (x,y)PDX3DY . Following Ref.@13#, we
transform from (x,y)PDX3DY to U5(u,v)PR2(N21) with
u5(u1 , . . . ,uN21) and v5(v1 , . . . ,vN21), where ui
5 ln(xi11 /x1) andv i5 ln(yi11 /y1), (i 51, . . . ,N21). The re-
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sult is an alternative version of our simplified model@Eqs.
~8!#, useful both for numerical stability during simulatio
and also for analysis in certain limits:

u̇i5bX

(
j

ãi j e
v j1ãi0

11(
j

ev j

2aXui and

v̇ i5bY

(
j

b̃i j e
uj1b̃i0

11(
j

euj

2aYv i , ~9!

where ãi j 5ai 11,j 112a1,j 11 and b̃i j 5bi 11,j 112b1,j 11 .
Since the dissipation rateg in U is

g5(
i

]u̇i

]ui
1(

j

] v̇ j

]v j
52~N21!~aX1aY!, ~10!

Eqs.~8! are conservative whenaX5aY50 and the time av-
erage of a trajectory is the Nash equilibrium of the ga
specified byA and B, if a limit set exists in the interior of
DX3DY @14#. Moreover, if the game is zero-sum, the dynam
ics are Hamiltonian inU with

H52byF(
j

xj* uj2 logS 11(
j

euj D G
2bxF(

j
y j

* v j2 logS 11(
j

ev j D G , ~11!

where (x* ,y* ) is an interior Nash equilibrium@13#.
To illustrate the dynamical-systems analysis of learning

multiagent systems using the above framework, we now a
lyze the behavior of the two-person rock-scissors-paper
teraction@15#. This familiar game describes a nontransiti
three-sided competition: rock beats scissors, scissors b
paper, and paper beats rock. The reward structure~environ-
ment! is given by

A5F eX 1 21

21 eX 1

1 21 eX
G and B5F eY 1 21

21 eY 1

1 21 eY
G ,

~12!

where eX ,eYP@21.0,1.0# are the rewards for ties. Th
mixed Nash equilibrium isxi* 5yi* 51/3, (i 51,2,3)—the
centers ofDX andDY . If eX52eY , the game is zero-sum

In the special case of perfect memory (aX5aY50) and
with equal learning sensitivity (bX5bY), the linear version
@Eqs.~8!# of our model@Eq. ~6!# reduces to multipopulation
replicator equations@11#:

ẋi

xi
5@~Ay! i2x•Ay# and

ẏi

yi
5@~Bx! i2y•Bx#. ~13!
6-2
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The game-theoretic behavior in this case with rock-sciss
paper interactions@Eqs. ~12!# was investigated in Ref.@10#.
Here, before contrasting our more general setting, we bri
recall the behavior in these special cases, noting severa
ditional results.

Figure 1 shows Poincare´ sections of Eqs.~13!’s trajecto-

FIG. 1. Quasiperiodic tori and chaos:eX52eY50.5, aX5aY

50, and bX5bY . We give a Poincare´ section ~top! on the

hyperplane defined byu̇150 and v̇1.0; that is, in the (x,y)
space: (31eX)y11(32eX)y22250 and (31eY)x11(32eY)x2

22,0. There are 23 randomly selected initial conditio
with energies H521/3(u11u21v11v2)1 ln(11eu11eu2)
1ln(11ev11ev2)52.941 693, whose surface forms the outer bor
of H<2.941 693.~Bottom rows!: Representative trajectories, simu
lated with a fourth-order symplectic integrator@16#, starting from
initial conditions within the Poincare´ section. The upper
simplices show a torus in the section’s upper right corner;
the enlarged section at the upper right. The initial condition
(x,y)5(0.3,0.054 196,0.645 804,0.1,0.2,0.7). The lower simpli
are an example of a chaotic trajectory passing through the reg
in the section that are a scatter of dots; the initial condition
(x,y)5(0.05,0.35,0.6,0.1,0.2,0.7).
01520
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ries on the hyperplane (u̇150,v̇1.0) and representative tra
jectories in the individual agent simplicesDX andDY . When
eX52eY50.0, we expect the system to be integrable a
only quasiperiodic tori should exist. Otherwise,eX52eY
.0.0, Hamiltonian chaos can occur with positive-negat
pairs of Lyapunov exponents@10#. The dynamics is very
rich, there are infinitely many distinct behaviors near t
unstable fixed point at the center—the classical Na
equilibrium—and a periodic orbit arbitrarily close to an
chaotic one. Moreover, when the game is not zero-sumeX
ÞeY), transients to heteroclinic cycles are observed@10#: On
the one hand, there are intermittent behaviors in which
time spent near pure strategies~the simplicial vertices! in-
creases subexponentially witheX1eY,0 and, on the other
hand, with eX1eY.0, chaotic transients persist; cf. Re
@17#.

Our framework goes beyond these special cases and,
erally, beyond the standard multipopulation replicator eq
tions @Eqs. ~13!# due to its accounting for the effects of in
dividual and collective learning and since the rewa
structure and the learning rules need not lead to linear in
actions. For example, if the memory decay rates (aX and
aY) are positive, the system becomes dissipative and ex
its limit cycles and chaotic attractors; see Fig. 2. Figure
~top! shows a diverse range of bifurcations as a function
eY : dynamics on the hyperplane (u̇150, v̇1.0) projected
ontoy1. When the game is nearly zero-sum, agents can re
the stable Nash equilibrium, but chaos can also occur, w
eX1eY.0. Figure 3 ~bottom! shows that the larges
Lyapunov exponent is positive across a significant fraction
parameter space, which indicates that chaos is common.
dual aspects of chaos, irregularity and coherence, imply
agents may behave cooperatively or competitively~or switch
between both! in the collective dynamics. Such global be
haviors ultimately derive from self-interested, myopic lear
ing.

Within this framework a number of extensions sugg
themselves as ways to investigate the emergence of co
tive behaviors. The most obvious is the generalization to
arbitrary number of agents with an arbitrary number of str
egies and the analysis of behaviors in thermodynamic lim
see, e.g., Ref.@18# as an alternative approach. It is relative
straightforward to develop an extension to the linear-rew
version@Eqs.~8!# of our model. For three agentsX, Y, andZ,
one obtains

ẋi

xi
5bXF(

j ,k
ai jkyjzk2(

j ,k,l
ajklxjykzl G1aXI i

X ~14!

with tensor (A) i jk5ai jk , and similarly forY andZ. Not sur-

r

e
s
s
ns
s

FIG. 2. Limit cycle ~left, eY50.025) and chaotic attractor~right, eY520.365), witheX50.5, aX5ay50.01, andbX5bY .
6-3
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prisingly, this is also a conservative system when thea ’s
vanish. However, extending the general collective learn
equations@Eq. ~6!# to multiple agents is challenging and s
will be reported elsewhere.

To be relevant to applications, one also needs to devel
statistical dynamics generalization@19# of the deterministic

FIG. 3. Bifurcation diagram~top! of dissipative~learning with
memory loss! dynamics projected onto coordinatey1 from the Poin-

caré section hyperplane (u̇150, v̇1.0) and the largest two
Lyapunov exponentsl1 and l2 ~bottom! as functions ofeYP
@21,1#. Here witheX50.5, aX5aY50.01, andbX5bY . Simula-
tions show thatl3 andl4 are always negative.
J,

e

,

-
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equations of motion to account for finite and fluctuati
numbers of agents and also finite histories used in learn
Finally, another direction, especially useful if one attempts
quantify collective function in large multiagent systems, w
be structural and information-theoretic analyses@20# of local
and global learning behaviors and, importantly, their diffe
ences. Analyzing the stored information in each agent ver
that in the collective, the causal architecture of informati
flow between an individual agent and the group, and h
individual and global memories are processed to susta
collective function are projects now made possible using
framework.

We presented a dynamical-systems model of collec
learning in multiagent systems, which starts wi
reinforcement-learning agents and reduces to coupled re
cator equations, demonstrated that individual-agent learn
induces a global game dynamics, and investigated som
the resulting periodic, intermittent, and chaotic behavi
with simple ~linear! rock-scissors-papers game interaction
Our model gives a macroscopic description of a network
learning agents that can be straightforwardly extended
model a large number of heterogeneous agents in fluctua
environments. Since deterministic chaos occurs even in
simple setting, one expects that in high-dimensional and
erogeneous populations typical of multiagent systems, int
sic unpredictability will become a dominant collective b
havior. Sustaining, useful collective function in multiage
systems becomes an even more compelling question in
of these results.
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