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Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe
the dynamics of collective learning in multiagent systems. We show that, although agents model their envi-
ronment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through
environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the
collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include
quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected
in heterogeneous multiagent systems described by the general replicator equations we derive.
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Adaptive behavior in multiagent systems is an importantone of N actions:i=1, ... N. Let the probability forX to
interdisciplinary topic that appears in various guises in manyhoose actiori be x;(n) andy;(n) for Y, wheren is the
fields, including biology{1], computer sciencg2], econom- number of the learning iterations from the initial statenat
ics [3], and cognitive sciencp4]. One of the key common =0. Agents’ choice distributions at timen are x(n)

questions is whether a group of intelligent agents truly en= (x1(n), ... xy(n)) and y(n)=(yy(n), ....yn(n)), with
gages in collective behaviors that are more functional thaiX;(n)=2;y;(n)=1.
individuals acting alone, and, if so, how. Let R andRY denote the rewards fox taking actioni

Suppose that many agents interact with an environmerandY actionj at stepn, respectively. Given these action€s
and each independently builds a model from its sensorand Y’s memories,Qix(n) and QiY(n), of the past benefits
stimuli. In this simple type of coupled multiagent system,from their actions are governed by
collective learning(if it occurs) is a dynamical behavior X X, n X X
driven by agents’ environment-mediated interact{@né]. Qr(n+1)— Qi (n)=Rjj—axQi(n) and
Here we show that the collective dynamics in multiagent Yin+tr 1) —oY(nm=RY— Y 1
systems, in which agents use reinforcement learfifilgcan Qi (n+H=Qi(M=Rj~avQi(n), @
be modeled using a generalized form of coupled replicatofyhere @, ,aye[0,1) control each agents memory decay

equations. , , » rate andQ(0)=Q,"(0)=0. The agents choose their next
Wh!le replicator dynamics was mFroduped originally 'for actions according to th@’s, updating their choice distribu-

evolutionary game theorj8], the relationship between rein- ions as follows:

forcement learning and replicator equations has been devetl- '

oped only recently9]. Here, we extend these considerations eﬁinx(n) eﬂyQiY(n)
to multiagent systems, introducing the theory behind a pre- Xj(n)= —— and y;(n)= ., (2
viously reported game-theoretic modél0]. We show that 2 eﬁijx(n) 2 eBijY(n)

i ]

replicator dynamics emerges as a special case of the
continuous-time limit for multiagent reinforcement-learning ) o
systems. The overall approach, though, establishes a genet¥iere Bx,Bye[0°] control the learning sensitivity: how

framework for dynamical-systems analyses of adaptive penuch the current choice distributions are affected by past
havior in collectives. rewards. Using Eq2), the dynamic governing the change in

Notably, in learning with perfect memory, our model re- 2gent state is given by

duces to the form of a multipopulation replicator equation x-(n)eBX(QiX("“)‘QiX(”))
introduced in Ref[11]. For two agents with perfect memory X(n+1)=— , ®)
interacting via a zero-sum rock-scissors-paper game, the dy- > X.(n)eﬁX(Q?(M 1)-Qf(n)

i

namics exhibits Hamiltonian cha40]. In contrast, as we 7
show here, with memory decay, multiagent systems gener-
ally become dissipative and display the full range of nonlin-and similarly fory;(n+1).
ear dynamical behaviors, including limit cycles, intermit- Consider the continuous-time limit corresponding to
tency, and deterministic chaos. agents performing a large number of actipiterates of Eqgs.
Our multiagent model begins with simple reinforcement-(1)] for each choice-distribution updafiterates of Eq(3)].
learning agents. To clarify the development, we assume thah this case, we have two different time scales—that for
there are two such agentsandY that at each time step take agent-agent interactions and that for learning. We assume
that the learning dynamics is very slow compared to interac-
tions and sox andy are essentially constant during the latter.
*Electronic address: ysato@bdc.brain.riken.go.jp Then, based on E¢3), continuous-time learning for ageXt
Electronic address: chaos@santafe.edu is governed by
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. -y -y sult is an alternative version of our simplified modE&is.
Xi=Bxxi| QF =2 QX |, (49 (8)], useful both for numerical stability during simulation
' and also for analysis in certain limits:

and for the dynamic governing memory updates we have

. 2 Eli- e’i +5'0
X_ pX X T J I
QI =R~ ® U= By——————— — aryu; and

where Rix is the reward forX choosing action, averaged 1+2 e’
over Y’s actions during the time interval between learning J
updates. Putting together Ed®), (4), and(5), one finds 5 5

. E b” eli+ biO

é:ﬁx Rix_z. XiRjX +aX|iX’ (6) vi::BY ] —ayUj, (9)

' ) 1+ e
J

where IiXEijj In(x;/x;) represents the effect of memory

with the decay parametery . (The continuous-time dynam- yhere Elij =a,141—a;+1 and ”5” =by, 11— byjis-

ics of Y follows in a similar manner.Eq. (6), extended t0  gjnce the dissipétion raté inUis ' ’

account for any number of agents and actions, constitutes our

general model for reinforcement-learning multiagent sys- au; 3{,j

tems. y=2 5=+ S t=—(N-1)(axtay), (10
Simplifying again, assume a fixed relationship between

pairs (i,j) of X’s andY’s actions and between rewards for

both agentsR){=a;; and R =b;;. Assume further thak

andy are independently distributed, then the time-averag

rewards forX andY become

Egs.(8) are conservative whesay= ay=0 and the time av-
erage of a trajectory is the Nash equilibrium of the game
%pecified byA andB, if a limit set exists in the interior of
Ay XAy [14]. Moreover, if the game is zero-sum, the dynam-
ics are Hamiltonian irJ with

Rlng a”yJ and RIYIE b”X] . (7)
H=—p8,| > x*u;—log| 1+ > e“J)
In this restricted case, the continuous-time dynamics is ) )

X - “vi—logl 1+ evi| |, 11
=Bl Ay~ x AL axl, B viveg 1S @]y

Vi where &*,y*) is an interior Nash equilibriuri13].

y_ = By[(BX);—y-Bx]+ ayl IY (8) To illustrate the dynamical-systems analysis of learning in

[

multiagent systems using the above framework, we now ana-
lyze the behavior of the two-person rock-scissors-paper in-
teraction[15]. This familiar game describes a nontransitive
three-sided competition: rock beats scissors, scissors beats
paper, and paper beats rock. The reward strudiemgiron-
meny is given by

where A);j=a;; and B);;=b;;, (Ax); is theith element of
the vectorAx, and By and By control the time scale of each
agent'’s learning.

We can regardA and B as X’s and Y’s game-theoretic
payoff matrices for actiom against opponent’s actign 12].
In contrast with the game theory, which assumes that agents ex 1 -1 ey 1 -1
have exact knowledge of the game structure and of other

agent's strategies, reinforcement-learning agents have no A= —1 & 1 and B= 1 & 1 ,
knowledge of a “game” in which they are playing, only a 1 -1 e 1 -1 ey
myopic model of the environment—other agajpt-given

implicitly via the rewards they receive. Nonetheless, a game (12)

dynamics emerges—vig* andRY in Eq. (6)—as a descrip- .
tion of the collective'sglobal behavior where ey,eye[—1.0,1.0 are the rewards for ties. The

Given the basic equations of motion for the Mixed Nash equilibrium isq'=yf=1/3, (i=123)—the
reinforcement-learning multiagent systé&yq. (8)], one be-  Centers ofdx andAy. If ex=—ey, the game is zero-sum.
comes interested in, on the one hand, the time evolution of !N the special case of perfect memory(= ay=0) and
each agent's state vector in the simplicesA, andye A, with equal learning sensitivitydx= By), the Ilne_ar version
and, on the other, the dynamics in the higher-dimensiondlEds:(8)] of our model[Eq. (6)] reduces to multipopulation
collectivesimplex (x,y) € Ay X Ay . Following Ref.[13], we  'eplicator equationpl1]:
transform from &,y) e AxX Ay to U= (u,v) e RZN"1) with S
u=(uy, ... uy—1) and v=(vq,...,vN-1), Where u; —'=[(Ay)i—x-Ay] and
=In(X;1/%) andv;=In(yi 1/y4), (i=1,... N—=1). The re- X

§=[<Bx>i—y~8x]. (13)
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ries on the hyperplanai{=0u,>0) and representative tra-
jectories in the individual agent simplicas, andAy . When
ex=—€ey=0.0, we expect the system to be integrable and
only quasiperiodic tori should exist. Otherwisey= — ey
>0.0, Hamiltonian chaos can occur with positive-negative
pairs of Lyapunov exponentslO]. The dynamics is very
rich, there are infinitely many distinct behaviors near the
unstable fixed point at the center—the classical Nash
: ; L . equilibrium—and a periodic orbit arbitrarily close to any
O T oz o3 44 05 05 U7 o8  °® ok 0w o om o7 o7 chaotic one. Moreover, when the game is not zero-sa (
X X # €y), transients to heteroclinic cycles are obseriHg: On
the one hand, there are intermittent behaviors in which the
time spent near pure strategié@he simplicial verticepin-
creases subexponentially wit#y+ ey,<0 and, on the other
hand, with ex+ ey>0, chaotic transients persist; cf. Ref.
[17].

Our framework goes beyond these special cases and, gen-
erally, beyond the standard multipopulation replicator equa-
tions [Eqgs. (13)] due to its accounting for the effects of in-
dividual and collective learning and since the reward
structure and the learning rules need not lead to linear inter-
actions. For example, if the memory decay rates @nd
ay) are positive, the system becomes dissipative and exhib-
its limit cycles and chaotic attractors; see Fig. 2. Figure 3
(top) shows a diverse range of bifurcations as a function of
3 1 ey dynamics on the hyperplanei{=0, v,>0) projected

ontoy,. When the game is nearly zero-sum, agents can reach

FIG. 1. Quasiperiodic tori and chaosy=—e,=0.5, ax=ay  the stable Nash equilibrium, but chaos can also occur, when
=0, and Bx=By. We give a Poincaresection (top) on the ex+e,>0. Figure 3 (bottom) shows that the largest
hyperplane defined by, =0 and v,>0; that is, in the X.y) Lyapunov exponent is positive across a significant fraction of
space: (3rex)y1+(3—€x)y>,—2=0 and (3+ey)X;+(3—€y)X, parameter space, which indicates that chaos is common. The
—2<0. There are 23 randomly selected initial conditions dual aspects of chaos, irregularity and coherence, imply that
with energies H=—-1/3(U;+U,+v,+v,)+In(1+e1+€e%) agents may behave cooperatively or competitivelyswitch
+In(1+€1+€2)=2.941 693, whose surface forms the outer borderbetween bothin the collective dynamics. Such global be-
of H=2.941 693.(Bottom row3: Representative trajectories, simu- haviors ultimately derive from self-interested, myopic learn-
lated with a fourth-order symplectic ingegratth], starting from  ing.
initial conditions within the Poincaresection. The upper Within this framework a number of extensions Suggest
simplices show a torus in the section's upper right comer; seghemselves as ways to investigate the emergence of collec-
the enlarged section at the upper right. The initial condition iStiye hehaviors. The most obvious is the generalization to an
(x.y)=(0.3,0.054196,0.645804,0.1,0.2,0.7). The lower simplices,pyrary number of agents with an arbitrary number of strat-
are an example of a chaofic trajectory passing through the regionggiag ang the analysis of behaviors in thermodynamic limit;
n the_ sggtlsog ?fga(; ;Belao Szcgt;er of dots; the initial condition Ssee, e.g., Refl18] as an alternative approach. It is relatively
(xy)=(0.05,0.35,0.6,0.1,0.2,0.7). straightforward to develop an extension to the linear-reward

ersion[EQs.(8)] of our model. For three agen% Y, andZ,
The game-theoretic behavior in this case with rock—scissorsY lon[Egs. (8)] . gents

. . ) ) . one obtains
paper interaction§Egs. (12)] was investigated in Refl10]. _
Here, before contrasting our more general setting, we briefly X
. ; ; =By 2 ainyizi— anXiyez | +axlt (14
recall the behavior in these special cases, noting several ad- X X < ijkYjk “ ikIXjY2i XU
ditional results. ' o
Figure 1 shows Poincargections of Eqs(13)’'s trajecto-  with tensor @);j =&, and similarly forY andZ. Not sur-
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FIG. 2. Limit cycle(left, e,=0.025) and chaotic attractéright, ey=—0.365), withex=0.5, ax=a,=0.01, andBx= By .
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1 equations of motion to account for finite and fluctuating
numbers of agents and also finite histories used in learning.
Finally, another direction, especially useful if one attempts to
quantify collective function in large multiagent systems, will
be structural and information-theoretic analyg2@)] of local

and global learning behaviors and, importantly, their differ-
ences. Analyzing the stored information in each agent versus
that in the collective, the causal architecture of information
flow between an individual agent and the group, and how
individual and global memories are processed to sustain a
collective function are projects now made possible using this
framework.

We presented a dynamical-systems model of collective
learning in multiagent systems, which starts with
reinforcement-learning agents and reduces to coupled repli-
cator equations, demonstrated that individual-agent learning
induces a global game dynamics, and investigated some of
the resulting periodic, intermittent, and chaotic behaviors
with simple (linean rock-scissors-papers game interactions.
-0.04 L L L Our model gives a macroscopic description of a network of
i e ' learning agents that can be straightforwardly extended to
model a large number of heterogeneous agents in fluctuating

FIG. 3. Bifurcation diagranitop) of dissipative(learning with  environments. Since deterministic chaos occurs even in this
memory losydynamics projected onto coordinatgfrom the Poin-  simple setting, one expects that in high-dimensional and het-
care section hyperplane uj=0, v,>0) and the largest two erogeneous populations typical of multiagent systems, intrin-
Lyapunov exponents\; and N, (bottom) as functions ofeye sic unpredictability will become a dominant collective be-

[ —1,1]. Here withex=0.5, ax=ay=0.01, andBx=By. Simula-  havior. Sustaining, useful collective function in multiagent
tions show thah; and\, are always negative. systems becomes an even more compelling question in light
of these results.

002 | ) -
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prisingly, this is also a conservative system when #ie .
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